Norberto Catarino Unidade de Física e Aceleradores CAMPUS TECNOLÓGICO E NUCLEAR

Rapid Thermal Processor AS-One 100

v 1.00 03/2013

MANUAL SIMPLIFICADO DE OPERAÇÃO DO FORNO RTA

Manual simplificado para operar o forno RTA As-One 100 existente na sala de fornos da Unidade de Física e Aceleradores do Instituto Tecnológico e Nuclear.

Rapid Thermal Processor AS-One 100

MANUAL SIMPLIFICADO DE OPERAÇÃO DO FORNO RTA

Índice

1. PREPARAÇÃO DO EQUIPAMENTO
1.1. Verificação no exterior3
1.1.1. Gases no exterior3
1.1.2. Tubagens no exterior5
1.2. Verificação no interior
1.2.1. Tubagens na sala de fornos6
1.2.2. Admissão de água para arrefecimento do RTA7
1.3. Verificação no RTA
1.4. Resumo na preparação do equipamento de RTA8
2. ARRANQUE DO SISTEMA DE CONTROLO9
2.1 Procedimento9
2.2 Acesso ao Software10
2.3 Funções manuais13
2.4 Verificação da prontidão do RTA14
3. RECOZIMENTO
3.1 Colocar a amostra na câmara de recozimento17
3.2 Editar uma receita20
3.3 Executar uma receita
4. DESLIGAR O RTA
4.1. Desligar no RTA24
4.2. Verificação no interior25
4.2.1. Tubagens na sala de fornos25
4.2.2. Admissão de água para arrefecimento do RTA26
4.3. Verificação no exterior27
4.4. Resumo na preparação do equipamento de RTA28
5. ANEXO
5.1. Receitas
5.2. Logbook do RTA32
5.3. Hardware – Performances e Limitações32
5.4. Uso da tampa de grafite33
5.5. Uso de NH3 – Precauções especiais!
5. POSSÍVEIS PROBLEMAS E SOLUÇÕES

1. PREPARAÇÃO DO EQUIPAMENTO

Seguem-se algumas recomendações a ter em conta antes de começar a operar o equipamento.

O forno RTA não é usado com frequência de modo que é necessário executar algumas operações para ficar apto a executar os recozimentos pretendidos e fazer ainda algumas verificações para operar o forno com segurança!

Atenção: Os equipamentos em uso podem diferir das fotografias usadas para ilustração! Por favor verificar os pormenores da instalação antes do seu uso efectivo!

1.1. Verificação no exterior

Antes de operar o forno RTA é necessário providenciar admissão de gases, tanto para o recozimento como para operação das válvulas.

Atenção: Antes da utilização do RTA verificar se as garrafas contêm gás suficiente para operação de recozimento!

1.1.1. Gases no exterior

Abrir as válvulas das garrafas de gás e respectivos redutores (Rodar no sentido dos ponteiros do relógio para abrir!);

Os redutores devem ter o parafuso de regulação desapertado (não dar passagem de gás) no momento em que se abrem as garrafas!

Abrir a garrafa de N2 e o manómetro desta até 6 bar de pressão ou até um valor ligeiramente superior! (Rodar o parafuso no parafuso no sentido dos ponteiros do relógio)!

Abrir o redutor da linha de N2 até aos 2 bar de pressão ou até um valor ligeiramente superior! (Rodar o parafuso no parafuso no sentido dos ponteiros do relógio). O manómetro de linha deverá indicar 2 bar de pressão ou ligeiramente superior!

Abrir as restantes garrafas e redutores, se necessário, a 2 bar de pressão ou ligeiramente superior!

ATENÇÃO: O manómetro da garrafa de NH3 não deve ultrapassar 4 bar de pressão!!!

1.1.2. Tubagens no exterior

Deverão ser verificadas todas as tubagens de admissão de gás, verificar que não existam fugas e o seu bom estado!

Verificar também o bom estado e o desimpedimento das tubagens de exaustão de gases (No caso do uso de NH3 verificar que a exaustão se faz para a água!);

Verificar o estado da mangueira de exaustão da bomba de vazio primário!

Verificar, no caso de uso de NH3, que existe água suficiente no recipiente!

1.2. Verificação no interior

1.2.1. Tubagens na sala de fornos

De Igual modo como no exterior, deverão ser verificadas todas as tubagens de admissão de gás, verificar que não existam fugas e o seu bom estado!

Abrir a válvula 1; Fechar a válvula 2, se necessário.

Manter a válvula 3 fechada.

Na foto as válvulas 1 e 3 encontram-se em posição fechada e a válvula 2 aberta!

Abrir o painel lateral desapertando os parafusos necessários (2, máx. 6)

Abrir as 2 válvulas de N₂ e as demais necessárias!

Levantar a parte plástica para abrir!

As linhas de gás estão identificadas esquematicamente na parede!

1.2.2. Admissão de água para arrefecimento do RTA

Devemos certificar-nos que o forno é refrigerado com um fluxo conveniente, para isso deverão ser verificadas todas as tubagens de admissão de água, verificar que não existam fugas e o seu bom estado!

Abrir as torneiras para possibilitar a circulação de água necessária para refrigeração do forno RTA.

Na foto as torneiras estão fechadas!

1.3. Verificação no RTA

Verificar que todos os cabos de alimentação do RTA estão ligados e podemos ligar os diversos disjuntores.

Ligar o interruptor da alimentação, na parede, rodar para a posição I.

Na parte de trás do RTA ligar o "GENERAL CIRCUIT BREAKER" ao colocá-lo na posição ilustrada ao lado (para cima)!

Iniciar o RTA carregando no botão ON, a verde, na frente do RTA (a luz acende)

1.4. Resumo na preparação do equipamento de RTA

1 Exterior	2 Interior	3 RTA
Abrir válvulas das garrafas a usar	Abrir torneiras da água	Abrir painel lateral do RTA
	Abrir torneira N ₂	Abrir vávulas de gás
Abrir redutores das garrafas	Ligar interruptor na parede	Ligar RTA no botão verde "ON"

2. ARRANQUE DO SISTEMA DE CONTROLO

2.1 Procedimento

Antes de iniciar-se o sistema, deve-se verificar se estão disponíveis os seguintes elementos:

- Electricidade
- Água, com uma pressão de 2-4 bares
- Ar comprimido, com uma pressão de 6 bar
- Gás de purga, com uma pressão de 1 bar
- Gases de processo, com uma pressão de 1-2 bares

Depois de verificados, podemos ligar o sistema utilizando o botão verde no painel frontal do RTA.

ATENÇÃO: O software (computador) de controlo do RTA é alimentado pelo o sistema do RTA, por devemos ligar o sistema utilizando o botão verde no painel frontal do RTA.

Cada vez que o sistema é desligado (pelo botão vermelho), o indicador de alarme ficar vermelho para informar que o sistema está desligado.

Quando o sistema é ligado, as luz verde do ON acende.

Nota: Se o sistema não permite ser ligado, verificação se o botão de emergência está pressionado. Neste caso, ele pode ser libertado por rotação, no sentido dos ponteiros do relógio.

O sistema de controle do AS-One é constituído por:

- Um PC, que é a interface entre o utilizador e o equipamento.
- Um PLC, que controla o processo de funcionamento e os dispositivos de segurança.

O PC e do PLC estão ligados por uma linha de comunicação Ethernet.

Inicie o software usando o ícone que foi instalado automaticamente durante a instalação do software.

2.2 Acesso ao Software

Quando o software inicia o computador exibe a página inicial e solicita as informações de acesso. O usuário deverá digitar o seu login e sua senha para ter acesso a funções de software.

O software tem quatro níveis de acesso:

- Modo de Operador
- Modo de Engenharia
- Modo de Administrador
- Modo de Manutenção

Cada nível de acesso requer um login e uma senha. Logins e senhas são case insensitive.

ATENÇÃO MODO DE ADMINISTRADOR:

Este modo permite o acesso a todas as opções de software, incluindo o modo de manutenção. Permite o controle directo das saídas do PLC sem travas de segurança

O modo de administrador dá acesso à administração da lista de logins e senha de acesso.

O login e senha do modo de administrador no sistema padrão é:

- Login: "adm"
- Password: "aaaa

System needs initialization. Please download a recipe.						
Lar	st downloaded recipe		Recipe to download			
Name	CALSUTC	Name		Download		
Date of last download	18/06/2010	Creation date				
Hour of last download	12:30:30	Modification date				
Username	Adm	Username				
PID table	SUTCPID-800	PID table		Stat process		
Thermocouple calibration table	Default_TC_Table	Thermocouple calibration tabl	le			
Pyrometer 1 calibration table (HT)		Pyrometer 1 calibration table ((HT)			
Post recipe action		Postrecipe action	Post recipe action			
				Piolle		
	Machin Start pur	e Chamber e Unlock chamber				
Rocipes Process	Historicals Configuration	Manual Mode Shutdown	ş	otware version : 21.0 PCD Version : 21.99		

Quando o software inicia o computador exibe a seguinte painel

Depois de ligar o sistema, é necessário fazer o download da configuração e tabelas a partir do PC para o PLC. Isto é feito através do download de uma receita. Pode ser qualquer receita.

Quando o sistema é iniciado, todo os dados internos do PLC são apagados. Devemos carregar uma receita, que inclui a configuração. Pode ser qualquer receita.

Seleccione uma "recipe" na direita e faça download! Espere...

Depois de carregar uma receita, a área de status superior pede ao operador para ligar o sistema.

Depois que o sistema for ligado, a área de status exibe a seguinte mensagem durante a inicialização. Esta operação pode levar até 30 segundos, dependendo das opções instaladas.

System is under initialization.	Com
Please wait.	

ne parameter Gas (seen) Pressures (mB Seto, IX-Cooling NZ Idle Com V Step tim System ON TC1 321127 Recipetin Step number Рут TCZ Condit Recipenance CALSUTC Cha Last downloaded recipe Recipe to download Name CALSUTC Name CALSUTC -Download Date of last download 01/09/2010 Creation date 06/11/2009 - 16:27:31 Hour of last download 16:58:34 Modification date 01/09/2010 - 16:29:31 Username Adm Username Adm SUTCPID-800 SUTCPID-800 PID table PID table Start process Thermocouple colibration table Default_TC_Table Thermocouple calibration table Default_TC_Table CAL_1000 Pyrometer 1 calibration table (HT) CAL_1000 Pyrometer 1 calibration table (HT) Post recipe action Purge Post recipe action Purge Brows Profile Downloading was successful Machine Chamber Unlock chamber Start purge Software version : 2.1.0 PCD Version : 2.1.99 Hist Configuration al Hod Shut down Recipe

Quando o software termina a inicialização do sistema aparece o seguinte painel!

Deverá, de seguida seleccionar, (em baixo), o painel "Manual mode"

2.3 Funções manuais

No modo manual o módulo de software de segurança não está ativado, a fim de permitir um mais fácil manutenção e controlo das operações. Mantém-se no entanto activos os bloqueios de hardware, de modo evitar danos graves ao sistema. Mantém-se também activos alguns bloqueios de software.

Gas (sccm) Pressure (mBar) Setpoint Machine parameters Setp. (*C RANG Idle Step tim System ON CAP TC1 co TC1 Step numbe Eng/Engine TC **Recipe na** 02 N2 Reset all Send 1000.0 1000.0 1000.0 Pressure con Oper Close Position ssure Mano auto Mano 1 Mano 2 Send setpoint (mBar Position (Inputs PGV < To exhaust > Pressure (mBar) Full scale Full scale 2 Chamber TC 2 RKC Turbo pump Unlock chamber Start Stop Power contacto Speed (Hz) ON OFF Temperature mode Stop W TPV TC1 Power Primary TFPV Pyro 1 Secondary ate turbo pur Temperature setpoin nt (%. Temp. setpoint (*C) Send Reset Recipe Process Historical Configu Shut do Software version : 2.0.0 PCD Version : 2.0.0

Quando o modo manual é seleccionado aparecer o painel:

ATENÇÃO: Não iniciar a bomba de circulação da água antes de abrir as torneiras e de se certificar que a circulação da água não está impedida!

O modo manual permite executar as seguintes operações:

- Controle manual do arrefecimento
- · Controle manual de equipamento de vácuo
- · Controle manual do painel de gás
- · Controle manual do aquecimento
- · Ajuste dos parâmetros PID

Clique na válvula de água para abrir e fechar. Um indicador verde fica ligado quando a válvula de água é ligado. Se o controlador de fluxo de água detecta um fluxo suficiente a linha de água fica de cor azul.

Active a válvula de refrigeração clicando nela com o cursor do rato (por cima de "cooling"). Aparece um indicador verde e a linha fica azul se a água circular!

Desactive a válvula de refrigeração clicando nela com o cursor do rato (por cima de "cooling")

Inicie a bomba de alto vazio carregando em "start" à direita na área designada "Turbo pump" O valor a atingir – 1500 Hz

ATENÇÃO:

Estas duas operações manuais são necessárias para operar forno RTA!

A Bomba de alto vazio deverá estabilizar nos 1500 Hz para correcto funcionamento!

O utilizador deverá assegurar-se que existe fluxo de água suficiente à temperatura adequada para o funcionamento do RTA (10I/min)

2.4 Verificação da prontidão do RTA

É recomendo fazer um ensaio de prontidão do equipamento, principalmente após longos períodos sem usar o RTA!

Para verificação de prontidão do RTA abrir o painel "Process":

R		
Name	·	Download
Creation date	amoniaclean	
Modification date	Amoniak Annealing Amonia	
Username	Annealing_Argon	
PID table	Annealing_Nitrogen Annealing_Vacuum	Start process
Thermocouple calibration table	AT_1200	
Pyrometer 1 calibration table (HT)	AT_SI_TC	
Post recipe action	AT_SU_HT AT_SU_TC CALSIHT CALSIHT1400	Browse
	CALSITC CALSU_SiMelting CALSUHT CALSUTC hardwarereadiness katharinateet	Profile
	Kaulahilatest	

De seguida fazer download e executar a "Recipe": "Hardwarereadiness"

Depois de seleccionada, carregar em "Start process". Seguidamente é adequado modificar o nome do histórico, aqui pode substituir-se "his" por "hr" e na frente colocar a data do dia...

É conveniente escrever um comentário no campo adequado, em baixo!

AS Start process CALSUTC		
	Historicals > manual 20100901171056 A	
Path	c:\program files\annealsys\historicals\	his_20100618123032 his_20100524170100
Historical Name	his_20100903143522	his_20100524145117 his_20100519101446
Operator name	Adm	manual_20100505204811 Fast-Cooling_R1000PYLT_900_05
Logging mode	Administrator	his_20100412113521 B1000TC SU WATER ALARM
Recipe name	CALSUTC	R1000TC_SU_01 CALSUTC_TC_ALARM
PID parameter table name	SUTCPID-800	CALSUTC_01
Thermocouple table name	Default_TC_Table	
Pyro 1 table name	CAL_1000	
Historical comment		
	Browse Start Cancel	

Não podem existir 2 históricos com o mesmo nome! Os históricos não podem ser apagados ou modificados! No final da operação, se tudo funcionar normalmente aparecerá uma mensagem de confirmação do sucesso da operação!

AnnealSys Control So	ftware	
😲 Step 0 : F	Recipe finished successfully on 12/	04/2010 at 11:35:31
	FINISHED	
	<u>k</u>	Software version : 2.0.2 PCD Version : 2.0.2
	Durante este processo, não s outras operações! Não interferir no processo, este	e deve executar quaisqu deverá ser automático!

Para o teste de prontidão do RTA ser mais eficaz aconselha-se a modificação da receita base "Hardwarereadiness" para uma temperatura de teste 50 ou 100 °C superior à temperatura máxima de recozimentos que se pretende atingir (máx 1500 °C)!

No ambiente de trabalho do portátil de controlo do RTA existe um ficheiro em formato de folha de cálculo onde se deverá registar o seu uso do forno RTA!

3. RECOZIMENTO

3.1 Colocar a amostra na câmara de recozimento

Apenas é possível abrir a câmara de recozimento do forno RTA quando este se encontra à pressão ambiente!

Esse valor é verificado no cimo do painel "Process" ou "Manual mode".

iccm)	Setpoint	Readout	Pressure	Rec	
N2	0.0	0.0	Full Range	NA	Cooling
NH3	0.0	0.0	Stain	1.00E+3	Step time
Ar	0.0	0.0			Recipetime
					Step number
					Condition
					Recipe name

No caso da pressão indicada ser inferior a 1.00E+3 mbar carregar em "Start purge" até atingir este valor!

Downloading was successful.							
			Machine		Chamber		
			Start purge		Unlock chamber		
Recipes	Process	Historicals	Configuration	Manual Mode	Shut down		

Para destrancar o RTA carregar em "Unlock chamber"

ATENÇÃO: Tanto ao abrir como ao fechar a câmara ter em atenção que é necessário puxar o manípulo da tampa no sentido de o afastar do RTA, ver imagem! Ao fechar a câmara voltar a ter esta atenção!

Colocar a(s) amostra(s) na extremidade do círculo interior da grafite, (parte mais baixa),

Segue-se um desenho esquemático Suceptor / amostra / medida da temperatura

ATENÇÃO: O gás entra na câmara pelo orifício da parte da frente, visível na parte de baixo da foto, e sai pelo orifício largo na parte de trás. Para minimizar a possibilidade da amostra sair do sítio ou virar durante o recozimento convém posicionar a amostra afastada desse percurso!

Verificar que a base de grafite não toca nos pinos de quartzo laterais, visíveis na foto! Se o suporte de grafite tocar nos pinos de quartzo o valor de temperatura medido não será o correcto! Se isso acontecer não é assegurada a reprodutibilidade do tratamento térmico!

Foi colocada uma rede no orifício de saída do gás, na parte de trás da câmara. O utilizador deverá assegurar-se que a rede se encontra no sítio apropriado a tapar o orifício! Tal é necessário para prevenir uma possível acidental perda de amostras!

ATENÇÃO: Antes de fechar a câmara de recozimento do RTA deve assegurar-se que o "O-ring" se encontra na posição correcta!

ATENÇÃO: Nunca tocar no suporte de grafite com as mãos! Existe uma pinça apropriada para manusear as peças de grafite! Não tocar em metais com as peças de grafite ou com a pinça!

Pinça para manusear as peças de grafite

Depois de colocar a(s) amostra(s), fechar e trancar a câmara (carregar em "Lock Chamber")

3.2 Editar uma receita

Na janela "Recipes" poderá, no campo "Recipe name" e no separador "Header", seleccionar a receita que quer verificar/modificar!

Reci	pe header information
System	AS-ONE
Creation date	17/01/2011 - 15:10:46
Modification date	18/10/2011 - 15:26:32
User Name	Adm
Recipe name	multiple10_5_100N2
Thermocouple calibration table	Default_TC_Table
Pyrometer 1 calibration table (HT)	CALSUHT_20110118
PID control parameter table	SUHTPID_20110118_wolid_1200
Post recipe action	Purge Clean CNone
< Commands >	
New Browse C	lelete Print Save as Save
Recipes Proces	s Historicals Configuration

No separador "Profile" poderá ver o perfil do tratamento térmico que corresponde à receita seleccionada! No separador "Steps" poderá verificar os passos da receita e modificá-los, se necessário!

Poderá necessitar alterar o valor do vazio a atingir (mínimo recomendado 5 e -6 mbar), isto é normalmente efectuado no passo 2 da receita, no campo "Pressure"!

Annealing_Nitrogen										
< Step 1 >				< Step 2 >				< Step 3 >		
Pressure		Ŧ	Pre	ssure			•	Duration		Ŧ
< 1	mE	Bar	<	9.9999	999E-	mE	Bar	3	5	;
Power (‰)		Ŧ	Pov	wer (‰)			•	Power (‰)		Ŧ
0				0				0		
PID Autotu	ning			PID A	Autotu	ning		PID Autotu	ning	
Rough pump		-	Tur	bo pum	р		Ŧ	No pumping		Ŧ
OFF					OFF			OFF		
OFF					OFF			OFF		
0				0				0		
0				0				0		
0				0				0		
,			,					,		
1							1	1		
>> Last					Cop	у		Insert	Delet	e

Poderá necessitar alterar a rampa de aquecimento (valor recomendado <u>30°C/s</u> – Máximo possível- 50°C/s)! A rampa e alterada no passo 8, bem como a temperatura final a atingir (máximo recomendado <u>1200 °C</u> – Máximo possível 1500 °C)

< Step 7 >		< Step 8	>		< Step 9	>		
Temp.Pyro1	-	-	Ramping 30	*0	▼ Ve	Duration		Y
Power (‰) 100	_		Pyro 1 ('C) 1100	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pyro 1 ('C) 1100	_	,
PID Autotuning PID Autotuning			PID Autotuning					
No pumping		Ŧ	No pumping		-	No pumping		Ŧ
OFF	OFF		OFF		OFF			
ON			ON		ON			
100		Α	100		A	100		Α
0			0			0		
0			0			0		

A temperatura de tratamento térmico pretendida deverá ser alterada nos passos 8 e 9, no passo 9 ajusta-se o tempo a que o forno deverá manter a temperatura pretendida!

< Step 8 >			< Step 9	>		< Step 10) >	
		_				-		_
Ramping		x	Duration		–	Temp.Pyro1		×
30	°C	/s	30		5	< 200	*(С
Pyro 1 (°C)		Ŧ	Pyro 1 (°C)		Power (‰)		Ŧ	
1100			1100			0		
PID Autotuning PID Autotuning				PID Autotur	ning			
No pumping		Ŧ	No pumping		•	No pumping		Ŧ
OFF	OFF		OFF		OFF			
ON			ON		ON			
100		Α	100		A	100		Α
0			0			0		
0			0			0		

Depois de efectuadas as alterações necessárias deverá guardar a receita, carregando em "save" (se necessário escolher um novo nome), para que estas se tornem efectivas!

Copy Insert Delete Print Save

3.3 Executar uma receita

Antes de executar a receita deverá verificar a informação e o perfil da mesma!

Para executar uma receita no RTA abrir o painel "Process":

Recipes	Process	Historicals	Configuration	ManualMode	Shut do w n
---------	---------	-------------	---------------	------------	------------------------

De seguida fazer download e executar a receita pretendida, carregando em "Start process"

Recipe to	o download	
Name	Annealing_Argon	Download
Creation date	17/01/2011 - 15:10:46	
Modification date	09/09/2011 - 12:56:51	
User name	Adm	
PID table	SUHTPID_20110118_wolid_1200	Start process
Thermocouple calibration table	Default_TC_Table	
Pyrometer 1 calibration table (HT)	CALSUHT_20110118	
Post recipe action	Purge	

Deverá dar um nome adequado ao histórico e preencher o campo de comentários, se necessário. (Recomendado)!

AS Start process CALSUTC		
	Historical data	KHistoricals > manual 20100901171056
Path	c:\program files\annealsys\historicals\	his_20100618123032 his_20100524170100
Historical Name	his_20100903143522	his_20100524145117 his_20100519101446
Operator name	Adm	manual_20100505204811 Fast-Cooling_B1000PYLT_900_05
Logging mode	Administrator	his_20100412113521 R1000TC SU WATER ALARM
Recipe name	CALSUTC	R1000TC_SU_01 CALSUTC_TC_ALARM
PID parameter table name	SUTCPID-800	CALSUTC_01
Thermocouple table name	Default_TC_Table	
Pyro 1 table name	CAL_1000	
Historical comment		
	Browse Start Cancel	

Inicie o processo carregando em "Start"!

Depois de terminado o processo aparecerá uma mensagem de sucesso caso não ocorra nenhum problema!

AnnealSys Control Software	
Step 0 : Recipe finished successfully on 12/04/2010 at 11:35:31	
FINISHED	4
	V
Ok Software version : 2.0.2 PCD Version : 2.0.2	11.

Poderá destrancar a câmara e retirar a amostra!

4. DESLIGAR O RTA

4.1. Desligar no RTA

Depois de trancada a câmara do RTA e não sendo necessário novo recozimento poderá proceder ao encerramento do software carregando em "Shutdown"!

No caso de não o ter ainda feito, aparecerá um aviso a perguntar se pretende desligar a bomba de vazio, deverá responder afirmativamente!

This software is not n	eleased	
0	Confirmation	
	The turbo pump is running Stop the turbo pump ?	ব
	Qk No Software PED Vo	vention : 21.0 etion : 21.0

Verificar que toda a alimentação do RTA é desligada, para tal devemos desligar os diversos disjuntores.

Encerrar o RTA carregando no botão OFF, a vermelho, na frente do RTA

Na parte de trás do RTA desligar o "GENERAL CIRCUIT BREAKER" ao colocá-lo na posição ilustrada ao lado (para baixo)!

Desligar o interruptor da alimentação, na parede, rodar para a posição 0.

4.2. Verificação no interior

4.2.1. Tubagens na sala de fornos

Deverão ser fechadas todas as tubagens de admissão de gás e Água!

Fechar todas 2 válvulas! Baixar a parte plástica para fechar!

Fechar o painel lateral apertando os parafusos necessários (2, máx. 6)

Fechar a válvula 1, 2 e 3.

4.2.2. Admissão de água para arrefecimento do RTA

Devemos certificar-nos que o forno é refrigerado com um fluxo conveniente, para isso deverão ser verificadas todas as tubagens de admissão de água, verificar que não existam fugas e o seu bom estado!

Fechar as torneiras de circulação de água necessária para refrigeração do forno RTA.

Na foto as torneiras estão fechadas!

4.3. Verificação no exterior

Depois de operar o forno RTA é necessário fechar as válvulas das garrafas de gás e respectivos redutores (Rodar no sentido dos ponteiros do relógio para abrir!);

Os redutores devem ficar com o parafuso de regulação desapertado (não dar passagem de gás) no momento em que se fecham as garrafas!

Fechar a garrafa de N2 e o! (Rodar o parafuso no parafuso no sentido contrario aos ponteiros do relógio)!

Fechar o redutor da linha de N2! (Rodar o parafuso no parafuso no sentido contrario aos ponteiros do relógio).

Fechar as restantes garrafas e redutores, se necessário!

ATENÇÃO: Verificar que todas as garrafas ficaram fechadas, de modo a evitar perdas de gás!!!

4.4. Resumo na preparação do equipamento de RTA

5. ANEXO

5.1. Receitas

Na janela "Recipes" poderá, no campo "Recipe name" e no separador "Header", seleccionar a receita que quer verificar/modificar! No separador "Profile" poderá visualizar o perfil do tratamento térmico que corresponde à receita seleccionada! No separador "Steps" poderá verificar os passos da receita e modificá-los, se necessário!

A seguir é apresentada uma receita genérica com a explicação de cada passo:

		Recipe head	er information			
System		AS-ON	E			
Creation date		17/01/2	011 - 15:10:46			
Modification date		30/11/2	011 - 15:28:36			
User Name		Adm				
Recipe nam	e	Ann	ealing_N	trogen	•	•
Thermocouple cali	bration table	Defau	It_TC_Table		•	•
Pyrometer 1 calibra	CALSI	JHT_20110118	;		•	
PID control parame	SUHT	SUHTPID_20110118_wolid_1200				
Post recipe action		Purg	je C.(Clean	C None	
						•
						÷
< Commands > -						
New	Browse	Delete	Print	Save as	Save	

No separador "Header" aparece a informação relativa à receita bem como a acção que será executada depois da receita -> Purga, Limpeza ou Nenhuma acção! Em geral estas opções não deverão ser alteradas pelo utilizador!

No passo 1 faz-se vácuo primário até 1 mbar com a opção "Rough pump"!

No passo 2 faz-se alto vazio até ao valor pretendido, máximo recomendado 2e-5 mbar, recomendado 6E-6 mbar, mínimo possível 3,6E-6 mbar!

No passo 3 espera-se algum tempo para operações de válvulas do RTA!

< Step 1	>				
Pressure		•			
< 1	mE	Bar			
Power (‰)		•			
0					
PID Autotuning					
Rough pump		•			
OFF					
OFF					
0					
0					
0					

	< Step 2	2>	
Pres	sure		•
<	2E-05	m	Bar
Powe	er (‰)		Ŧ
	0		
	PID Autotu	ning	
Turb	o pump		•
	OFF		
	OFF		
	0		
	0		
	0		

< Step 3	>	
Duration		-
3	\$	\$
Power (‰)		•
0		
PID Autotur	ning	
No pumping		Ŧ
OFF		
OFF		
0		
0		

Nos passos 4 a 6 vai-se encher a câmara com o gás pretendido para o recozimento.

No passo 4 inicia-se o processo com um enchimento lento e constante a 100 sccm.

No passo 5 faz-se uma rampa até 1000 sccm ao fim de 60s.

No passo 6, a uns constantes 1000 sccm, leva-se a câmara à pressão atmosférica! (Note a opção de alarme activada – o processo será interrompido se o fluxo de gás variar consideravelmente!

< Step 4	>		
Duration		•	
100	\$;	
Power (‰)		•	
0			
PID Autotuning			
No pumping		•	
OFF			
ON			
100			
0			
0			

< Step 5 >			
Duration		•	
60 s		5	
Power (‰)		-	
0			
PID Autotuning			
No pumping		•	
OFF			
ON			
1000	R		
0			

Os passos 4 e 5 são necessários para evitar que o fluxo de gás a entrar na câmara não desloque/vire as amostras de pequena dimensão! A opção de alarme não funciona

correctamente quando usada em conjunto com a opção de rampa! Mínimo de fluxo para usar a opção alarme -> 80 sccm!

No passo 7, (com pequeno fluxo), faz-se um aquecimento sem controlo até 200 °C pois o pirómetro instalado apenas reage a temperaturas superiores a 150 °C!

No passo 8 faz-se um aquecimento controlado até à temperatura pretendida!

No passo 9 define-se o tempo de tratamento térmico (ver anexo A3 Hardware - Performances e limitações)!

< Step 7 >			
Tem	np.Pyro1		•
>	200	*(С
Pow	/er (‰)		•
	100		
PID Autotuning			
Nop	oumping		•
OFF			
ON			
	100		Α
	0		
	0		

No passo 10 espera-se que a temperatura da câmara baixe, com fluxo do gás, até ao momento de executar a acção pós-receita. Tal momento é definido pelo passo 11, sem alteração dos parâmetros por defeito!

< Step 10)>		
Temp.Pyro1		•	
< 200	*(0	
Power (‰)		Ŧ	
0			
PID Autotuning			
No pumping		•	
OFF			
OFF			
OFF			
0FF 0N 100		A	
0FF 0N 100 0		A 	

< Step 11	>		
Duration		-	
٥	\$	3	
Power (‰)		Ŧ	
0			
PID Autotuning			
No pumping		•	
OFF			
OFF			
0			
0			
0			

5.2. Logbook do RTA

Deverá registar o seu uso do RTA no ficheiro em formato de folha de cálculo existente no ambiente de trabalho do portátil de controlo do RTA.

R	TA_logbook.ods - OpenOffice.or	rg Calc			
File	Edit View Insert Format	[ools <u>D</u> ata <u>W</u> indow <u>H</u> elp			
1	- 😫 日 👒 📝 🔒 🖁	🗄 🕓 I 🖑 🚝 I 🔀 🗟 🛷 I 🧌	0 - 🖓 - 🚳 🏞 👪 🔟 🤣	# 0 🖻 🗟 🔍 🔞 🖕	Find 💽 🔩
	Arial	10 ■ B <i>I</i> <u>U</u> ≡ ≡ ∃	≡ 📰 📕 % 👯 🐘 ≡	🤕 🚓 🛛 • 🎘 • 🗛 • 🖕	
E50	💽 🏂 🖺 :	=			
	A	В	с	D	
1	RTA LOGBOOK				
2					
3	DATE	USER	ANNEALING TIME/TEMP	ATMOSPHERE	SAMPLE

5.3. Hardware – Performances e Limitações

O forno RTA está preparado para funcionar a alta temperatura (máx 1500 °C). A seguir a tabela do tempo limite para determinada temperatura:

Temperature	Maximum duration
1500°C	30 s
1400°C	150 s
1200°C	15 mn
950°C	3 hours

Mediante o intervalo de temperaturas a usar deve ser escolhido o sensor de temperatura apropriado:

Termopar	0 – 1000 °C
Pirómetro de baixa temperatura	150 – 1100 °C
Pirómetro de alta temperatura	400 – 1500 °C

Rampa máxima de aquecimento

Óptima	30 °C/s
Máxima recomendada	40 °C/s
Máximo	200 °C/s
	(limitado a 50 °C/s)

5.4. Uso da tampa de grafite

Existe uma tampa de grafite purificada (97mm diâmetro) que poderá ser colocada a cobrir o suporte de grafite, (por cima das amostras), para:

- Garantir a homogeneidade da temperatura em todas as partes do suporte;
- Garantir que as amostras não se movem durante a admissão de gásO forno RTA está preparado para funcionar a alta temperatura (máx 1500 °C). A seguir

ATENÇÃO: Não tocar no suporte de grafite com as mãos! Manusear sempre a tampa de grafite com a pinça apropriada! Não tocar com a pinça ou peças de grafite em metais!

Pinça para manusear as peças de grafite

5.5. Uso de NH3 - Precauções especiais!

A amônia é uma substância produzida em grandes quantidades por sociedades químicas. Fica queimado quando a condensação do ar atinge valores entre 16 e 25% e é inflamável quando atinge a temperatura de 651°C. A título de curiosidade pode também referir-se que a amônia está também presente nos sistemas de refrigeração e controle térmico nas estações espaciais.

A amônia apresenta alguns riscos:

- Ingestão: Perigoso. Os sintomas incluem náusea e vômitos, causando danos aos lábios, boca e esôfago.
- Inalação: Os vapores são extremamente irritantes e corrosivos.
- Pele: Soluções concentradas podem produzir queimaduras severas e necroses.
- Olhos: Pode causar danos permanentes, inclusive em quantidades pequenas.Existe uma tampa de grafite purificada (97mm diâmetro) que poderá ser colocada a cobrir o suporte de grafite, (por cima das amostras), para:

ATENÇÃO:

O amoníaco é um gás tóxico, corrosivo e inflamável! Precauções e cuidados adicionais são necessários! O Amoníaco pode formar misturas explosivas com o oxigénio!

Recomenda-se o uso de óculos de protecção, bata e luvas no momento de abertura ou fecho da garrafa de amoníaco e do respectivo redutor!!

5. POSSÍVEIS PROBLEMAS E SOLUÇÕES

Depois de um recozimento a câmara não abre!

Verificar se a câmara se encontra à pressão atmosférica (1x10³ mbar). Se a pressão for inferior fazer purga durante alguns segundos!

Ao executar o software de controlo do RTA dá erro: "Sistema desligado "

Ligar o interruptor na parede e/ou o disjuntor na parte de trás do RTA.

Ao executar uma receita o processo é abortado e aparece a mensagem de erro "EOS condition found at step 0"

Provavelmente algum dos parâmetros do RTA não se encontrava ainda no valor necessário -> executar novamente a receita!

O processo é abortado e aparece a mensagem de erro "Gas process line"

Ocorreu uma falha de gás (>10%) num passo em que o alarme está activo. (Atenção: não activar alarme durante rampas de gás!)

(Atenção: Não activar o alarme para fluxos de gás inferiores a 80 sccm!)